

# COAL PROCESSING VIA SOLVENT EXTRACTION

#### **Presented at**

# **The Direct Carbon Fuel Cell Workshop**

July 30, 2003 NETL - Pittsburgh, PA

John Zondlo
Peter Stansberry
Alfred Stiller
Elliot Kennel

WEST VIRGINIA UNIVERSITY MORGANTOWN, WV 26506



# **THE NEED**

- ♦ Convert coal to a suitable fuel for use in the direct carbon fuel cell
  - The <u>problem</u>: coal contains ash and sulfur.
    - ♦ Ash contaminates the electrolyte
    - ♦ Sulfur degrades the electrodes



# THE CHALLENGE

To produce a suitable feedstock for the direct carbon fuel cell from coal, we must:

- ♦ Reduce the mineral matter content
- Reduce the sulfur content
- **♦** Reduce the volatile matter
- **♦** Control the microstructure



#### **Reduce Mineral Matter**

- **Solvent Extraction - Solvent Extraction -**
  - ♦ Organic solvent (NMP) dissolves organic matter in coal and leaves behind mineral matter (ex. sugar and sand)
  - ♦ Reflux at 202°C for 1 hour

Aside - as mineral mater is removed, heating value increases

ex. Raw Coal ~ 12,500 BTU/lb Extract ~ 14,500 BTU/lb



# Mineral Matter Reduction (as ash) <u>WVGS Coals</u>

|                                                    | WVGS<br>13425 | wvgs<br>13423 | wvgs<br>13407 | WVGS<br>13421 | wvgs<br>13424 | WVGS<br>13422 | wvgs<br>13426 |
|----------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| % Extract Yield                                    | 25.0          | 34.2          | 66.3          | 63.1          | 27.7          | 25.0          | 21.4          |
| % Ash in Raw<br>Coal (Dry)                         | 6.3           | 4.3           | 16.1          | 3.2           | 12.4          | 6.5           | 8.2           |
| % Ash in Extract (Dry, filtration)                 | 0.2           | 0.3           | 0.2           | 0.1           | 0.2           | 0.2           | 0.3           |
| % Ash in Extract (Dry, Centrifugation, Filtration) |               |               |               | 0.04          |               |               |               |



#### **Reduce Sulfur**

- ♦ Sulfur in coal exists as
  - organic sulfur
  - inorganic sulfur
- ♦ Solvent extraction removes <u>all</u> inorganic sulfur and some organic sulfur
- ♦ Select coal with predominately inorganic sulfur

#### ex. Bakerstown Coal:

Raw Coal - 4% overall sulfur Extract - 1% organic sulfur



#### **Reduce Volatile Matter**

- ♦ Extract contains about 25% volatile matter
- ♦ Can be easily removed by "coking" and "calcining"

i.e. heat to ~ 500°C in inert atmosphere (coking) i.e. heat to ~ 1300°C in inert atmosphere (calcining)

ex. Arch Coal Sample:

VM Raw coal = 32%

VM Green Coke = 6.2%

VM Calcined coke = 0%



#### **Control Microstructure**

- **♦** Raw extract yields disordered or "turbostratic" carbon
- ♦ Can hydrotreat raw coal to yield very anisotropic carbon
- ♦ Can blend raw and hydrotreated extracts to tailor microstructure
- ♦ Heat treatment of the coke can alter the microstructure.



# **USE OF THE RESIDUE**

- ♦ As a boiler fuel blended with lowash coal
- As a gasification feedstock -Hydrogen production
- ♦ As a source material for activated carbon
- ♦ As a catalyst/catalyst support



# **ECONOMICS**

Mitre Corporation performed an initial cost estimate on the basic extraction process.

- **♦** Cost of Production:
  - ≈ ~\$80/ton for raw coal
  - ≈ ~\$174/ton for calcined extract
- **♦ Cost Based on Heating Value:** 
  - \$2.76/Million BTU for extract
  - \$6.00/Million BTU for calcined extract



# **SUMMARY**

- Solvent extraction is a viable mechanism to clean coal for the carbon fuel cell
- Ash and Sulfur can be reduced
- Structure can be controlled
- Preliminary economics look favorable
- Samples are available for evaluation